Monday, 23 April 2012


Space weather: Cloudy, with a chance of solar flares

By some quirk that physicists do not yet entirely understand, sound waves travel faster through sunspots than through the rest of the sun’s interior. Ilonidis measures how long it takes a sound wave to travel from one point on the Sun’s surface to a depth of 37,000 miles and back up to another point. On average, it takes a sound wave an hour to bounce from one point to another 93,000 miles away, but a sound wave passing through a sunspot may shave 12 to 16 seconds off its time. By repeating the process with millions of pairs of points, Ilonidis can chart out a map that identifies regions where travel time is significantly shorter than expected – locations where sunspots are likely to appear. "This is the first time that we can actually detect sunspots inside the sun," says Ilonidis.
Ilonidis cannot run the technique in real time yet, mainly because he does not have access to computers powerful enough to run a live analysis, but he is hopeful that in the next couple of years it could be used to scan the whole surface of the Sun and predict the formation of new sunspots. Such an advanced warning system could buy us a few extra days notice of an impending solar storm.
Impact monitor
Once a solar storm reaches Earth, forecasters need to know how it will react with the particles and magnetic field surrounding the planet. A trio of CubeSats, tiny satellites weighing around 3kg (6.6lb) and made with mostly off-the-shelf components, is about to join the larger missions already orbiting Earth like Nasa’s Solar Terrestrial Relations Observatory(STEREO).
The miniature-satellite mission, called TRIO-CINEMA, is a collaboration between the University of California Berkeley, Kyung Hee University, South Korea, and Imperial College London. Each of the CubeSats will carry two instruments: MAGIC, which will measure variations in Earth's magnetic field, and STEIN, which will monitor fast moving particles.
MAGIC is around the size of a pound coin, making it smaller and less power-hungry than sensors that do the same job in larger satellites. "Mass, volume, and power are all very limited in these tiny spacecraft," says Robert Lin of UC Berkeley, who leads the mission. Though less sensitive, having sensors on a constellation of CubeSats will give scientists a global picture of what is happening in Earth's magnetic field, something not possible with a sensor on a single spacecraft. STEIN will monitor both charged and neutral particles as they interact with Earth's magnetic field and radiation belts, enabling scientists to create maps and movies charting the particles' behaviour.
The first CINEMA CubeSat will launch in summer 2012, with the other two later on in the year. To keep costs down the CubeSats will hitch a ride on other missions to reach their orbit 600km above Earth. Data from TRIO-CINEMA will help scientists understand the behaviour of the near Earth environment and feed into space weather forecasting models, says Lin.
Global system
At the moment, space weather alerts and reports are done on a piecemeal basis. The Goddard Space Flight Center forecasters provide space weather information to all Nasa robotic missions. A new European system called SPACECAST provides radiation forecasts to help satellite operators protect their equipment. And NOAA’s Space Weather Prediction Center provides alerts and forecasts to power grid operators, commercial airlines, radio operators and other companies who need them, as well as government agencies.
But the Space Weather Prediction Center relies on the strength of data available, and right now there are only a few dedicated operational space weather-monitoring systems around the world. Baker thinks the entire suite of monitoring and alert systems could be better integrated to provide a global effort to protect the Earth from space weather. “Let’s, as a nation, but also as a world, since space weather knows no boundaries or borders, really pool our resources, our assets and put together a much more dedicated, operational worldwide space weather system,” he says. A first step would be an international agreement to share all data, then agreements on observing responsibilities of each nation. “Every nation could do its share and everyone would benefit,” he says.

No comments:

Post a Comment